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On the size distribution of small regular 
fragments 

Y. GUR, R. E N G L M A N ,  Z. JAEGER 
Soreq Nuclear Research Centre, Yavne 70600, Israel 

Two- and three-dimensional small-sized fragments in solids are modelled by rectangular 
parallelograms and parallelopipeds formed of randomly distributed "cracks", namely, 
lines or plaquettes of constant size. Size and shape distributions are derived for the 
fragments and it is shown that the cumulative size distribution function is usefully repre- 
sented by the "Mott  distribution" (an exponential decrease with the linear size of the 
fragment). For increasing size, upward and downward deviations from this distribution 
occur for high and low crack densities, respectively. 

1. In t roduc t ion  
In several branches of mineral processing the size 
distribution of rock-pieces is a technologically 
and economically important factor. Thus in the 
burning of oil-shale one desires to have a fairly 
narrow range of fragment sizes. Especially proble- 
matic are the small pieces (so-called "fines", of 
diameter less than 1.5 cm) since these tend to 
smother the combustion or to leave the processing 
plant through the chimney. In an ambitious design 
of the plant, one would even need the distribution 
of fines, not just their total number, so as to take 
into account their thermo- and aerodynamic 
properties. 

Experimental determinations of rock-size distri- 
butions have been undertaken [1, 2] and, as a 
result, empirical laws have been proposed for the 
number of rock-pieces as a function of fragment- 
size. The laws include Poisson distribution with 
respect to the linear dimension of the piece (the 
so-called Mott distribution) [3], a generalization 
of this [4], a log normal distribution [1, 5], and 
others [6]. Some theoretical justification has been 
presented for the Mott distribution [7]. 

Stereological approaches to the problem in two 
dimensions have considered the distribution of 
areas formed by infinitely long lines [8]. For two 
sets of lines with a fixed angle, qS, between them, 
and each set having a mean separation, X -a , 
between the lines, formulae can be given for 
f=(a) the distribution of areas (a) or the cumu- 

lative fraction, this being defined as the fraction 
of areas with sizes larger than a [3]. Explicitly [9] 

f~176 = 2X 2 sin q~Ko [2X(a sin q~)l] 

where K0 is a Bessel function. 
For infinite lines with arbitrary orientation the 

first and second moments have been given but not 
the distribution ([8], Oh. 3). 

This work aims at the statistics of small rec- 
tangular parallelograms (Fig. 1) and parallelopipeds 
(Fig. 2) (collectively called small regular fragments) 
formed by boundaries (lines or square plaquettes) 
of Fixed dimensions (L or L 2) oriented along two 
or three orthogonal directions. As noted above, 
consideration of small fragments is justified by 
their technological significance. Moreover, it will 
be argued that the majority of small fragments will 
be the regular ones, namely those formed by four 
lines or by six plaquettes, rather than irregular 
ones which are bounded by a larger number of 
boundaries. 

2. The model 
2.1. Plaquettes 
A model of "plaquettes" is used to obtain the 
distribution of fragments in three dimensions 
(d = 3). The simpler and less realistic case of 
two dimensions (d = 2) will be given incidentally. 
It is known that fragments are formed by cracks 
surrounding the rock-piece, whereas cracks arise 
during a typical dynamic process (such as explo- 
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Figure 1 Small regular fragments in a plane. 
(a) A fragment (shaded) in the form of a 
perpendicular parallelogram with edges X, Y 
formed by orthogonal lines of length L. (b) 
Two regular fragments are shown with 
different shadings. The area of the small 
fragment is also included in the larger frag- 
ment. 

sire fracture) in a way which is not far from 
random. The situation is simplified by postulating 
three types of  plaquettes, oriented in three ortho- 
gonal directions, i.e. having normals along x, y and 
z, respectively. Plaquettes are square and of equal 
size (L x L); each type is randomly distributed in 
space with a density, p. The plaquette model has 
been used for a discrete lattice by Aizenman et al. 
[10] in a study of phase transitions and a two- 
dimensional form of it by Robinson [11] to 
investigate percolation. 

The present research is concerned with rec- 
tangular parallelopipeds (abbreviated PPP) formed 
by six plaquettes and seeks the number of PPP as 
functions of their volume, v, shapes, etc, as well 
as of  the dimensionless density, p'  = pL 3 . Admit- 
tedly, fragments (i.e. three-dimensional forms) 
of  other, more complex shapes than PPP will also 
be present. However, it is believed that the small- 
sized fragments (4  L 3) are made up predominantly 
from PPP, other shapes being characteristically 
of  larger size. (This belief is to some extent sub- 

/ 

Figure 2 Construction of a rectangular parallelopiped 
(shaded) from a long hollow column and two square 
plaquettes (base and lid) placed a distance Z apart. A 
section of the column is shown dotted. 
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stantiated by photographs of crushed rock in 
which small pieces tend to have simple shapes 
and large ones are jugged [12].) We return to this 
point later. 

2.2. Derivation of the distribution 
In any event the distribution of PPP is a well- 
defined problem which can be approached by a 
combination of probabilistic and computational 
methods. Define N(X,  Y, Z)dXdYdZ as the num- 
ber of PPP in a large volume (>> L 3) having edge 
lengths in the intervals ( X - d X ,  X), (Y- -dY,  Y) 
and (Z - -d Z ,  Z). Consider now a long hollow 
rectangular column of sides X, Y and length V1/3~ 
From a PPP by inserting a "base" and a "lid" 
(Fig. 2). Suppose that the basal plaquette is at a 
point Z b along the column: then the conditional 
probability for the nearest plaquette (the lid, that 
fully covers the cross-section of the column) to be 
in the interval (Z b + Z -- dZ, Z b + Z) is: 

p [ ( L - - X )  (L- -  Y)]e-p[(L-X)(L-Y)IZdZ (1) 

where the quantity (L -- X) (L -- Y) is the area on 
which a fixed point on the plaquette (e.g. its 
centre) must lie in order to fully cover the cross- 
section [8]. The number of basal plane fully 
containing the cross section is: 

V1/3 p(L -- X)  (L -- Y) 

Applying similar considerations to the sides in the 
X and Y directions yields the number of PPP in 
the volume, V: 

N(X, Y , Z ) d X d Y d Z  

= Vp6[(L - - X ) ( L  -- Y ) (L  --Z)]  4 
(2) 

x exp {- -p[L2(X+ Y + Z )  

-- 2L(XY + YZ + ZX)  + 3XYZ]} dXdYdZ 



In two dimensions one finds for the number of I~ .,_, . . . . . . . . . . . .  
rectangular parallelograms: / / ~ / ~  

N(X, Y)dXdY = Aa 4 [(L - -X)  (L -- Y)] 2 

xexp {--a[L(X+ Y)[-2XY]}dXdY (3) I~ I [ / / ~  
where A is the area of the medium and o the 
surface density of the lines in either the x or the g z l / ~  
y direction. 

The next step is to integrate Equations 2 and 
3 over the full range (0, L ) o f  the b o u n d a r y - ~ 1 o - 3 / ~  
variables, X, Y,Z, subject to some constraint on 
X, Y, Z. This will be in three dimensions: 

s g z  = V (volume of PPP) 16~e ~[- ~ 
so as to obtain the volume distribution Fvo 1 1![ 
(vL -a) of fragments. Shape distributions can be KS~ 

I 1, 1 k further obtained by renaming the variables x, 0 5 I0 15 20 25 
y,  z according to their magnitude by X~, X2,X3 
such that: 

X1 ~<X2 ~<X3, 

and defining shape-parameters: 

S, ~- 0(3 -- J~)/2X (4) 

S2 - ( 2 -  X~) /2  (5) 

where X =  ~(X1 +X2 +X3). $1 and Sz take 
values between 0 and 1 and measure, respectively, 
the prolateness and oblateness of the PPP. Fp~o(S1 ) 
and Fobl(Sz) are their distribution functions. 
These S-parameters are connected to those in the 
Zingg classification system [1, 13] through the 
relations: 

thickness 1 -- $2 

breadth (3/2) + Sa -- $t 

breadth (3/2) + $2 --S~ 

length (1/2) + $1 

Another interesting quantity is the volume, 
O(p)V, that is occupied by PPP, the complement 
(1 --O)V being made up of more complex figures. 
Clearly O(p) increases with p (Fig. 3), it being 
very small for small p when only few of the closed 
forms are PPP, first rises towards unity as p 
increases, overshoots by about 10% (since the 
volume of a PPP inside a larger PPP is overcounted), 
then settles down. Although only a tiny fraction 
of all the figures are PPP even for moderate 
p (e.g. for p' = p L  3 = 0 .8 ,  0 = 6.8 x 10 .6 , see 
Fig. 3), it is very likely that the small bodies 
are overwhelmingly PPP. This is almost evident 
for p ~ 0  (we thank Professor M. Aizenman for 

Reduced density p' 

Figure  3 The fraction, 0, of  the total space occupied by 
small regular fragments as a function of the reduced bound- 
ary density, p ' .  p '  is p L  3 in three dimensions and aL 2 in 
two dimensions. (L is the linear dimension of  plaquettes 
and of  lines forming the boundary.)  

pointing this out to us) and for pL 3 ~ 1 (afortiori, 
since then almost all figures are PPP). 

In two dimensions one has the distributions 
fax(aL -2) for the areas: 

a -  XY 

as well as the distribution function, fe]ong(S3), for 
the elongation variable 

I x -  YI 
$3 - (6) X+Y 

3 .  R e s u l t s  
The computed distributions are definite integrals 
that are probably expressible in terms of known 
or tabulated functions (indeed fax(a) is certainly 
such). Even so, it was thought more economic to 
evaluate several distributions simultaneously by a 
Monte-Carlo procedure involving about 10 6 events. 

Typical computed results are shown in Figs. 4 
and 5 for two and three dimensions, respectively. 
The size distribution (being the number of small 
regular fragments of a given size per unit interval 
of size) decreases fast with "size" (volume v, for 
d = 3 and area a, for d = 2) but, for most of the 
range, does so slower than exponentially. The 
shape distributions (defined as the total number 
of fragments having a given value of the shape 
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Figure 4 Computed results in two dimensions (p' = 0.4). Number of fragments per unit area as a function of fragment 
area: full lines; left hand, logarithmic scale. Number of fragments per unit  shape-parameter (Equation 6) as a function of 
shape parameter: broken lines; right hand, linear scale. (Normalizations: curves on linear scale integrate to unity. Uni t  
of area: L 2.) 

parameter  S per un i t  interval or the shape para- 
meter)  show a broad coverage of  shapes. This 

s i tuat ion is c o m m o n  to all densities investigated 

in this study. 
More useful  quant i t ies  than the dis t r ibut ion 

func t ion  are the cumulative fractions Feum(VL -3) 
and feum(aL-2), defined as the fractional number  
of  all small regular fragments, which are such 

that  their sizes exceed v or a. For  v or a equal to 

zero the cumulative fraction is evidently uni ty ,  
whereas it is zero for v = L  3 or a = L  2, these 

being the largest dimensions of  our  small regular 

fragments. According to an empirical law (" the  
Mort d is t r ibut ion")  the cumulat ive fraction 
decreases exponent ia l ly  with the linear dimen- 
sion of  the fragment [3]. Our results have been 
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Figure 5 Results in three dimensions (computed for O' = 0.8). Number of fragments per unit volume as a function of 
fragment volume: full lines; left hand, logarithmic scale. Number of fragments per unit shape-parameter as a function 
of shape parameters (Equations 4 and 5): right hand, linear scale. Prolateness (S;), broken lines; Oblateness ($2), dash- 
dotted lines. (Normalizations: curves on linear scale integrate to unity. Unit of volume: L 3 .) 
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Figure 6 The coefficient b' in the exponent 
of Equation 7 plotted logarithmically against 
the reduced density, p' (appearing in Fig. 3). 

fitted to the forms: 

Feum(VL -3) = exp [-- b ' ( p ' ) L  -1 v a/3 

--  a' (p') L-3 v] 
(7) 

feum(aL -2) = exp [-- b ' (p ' )L  -1 a u2 

-- a'(p') L-2 a] 

where p'  is the dimensionless density of  bound- 
aries: pL 3 and ol. z in three and two dimensions, 
respectively. 

The coefficient a' measures the deviation from 
a Mott distribution. It was found that the above 
fit is an excellent representation of  the computed 
results in two dimensions and a good representa- 
tion in three dimensions for 99% or more of  the 
fragments. 

The coefficient b(p ' )  is shown in Fig. 6 as 
function of  the reduced density, p'.  For a Mott 
distribution ( a ' =  0) in d-dimensions, b is related 
to the mean size 77 a of  the fragments through 

b' /L = (d! /#a)  '/a 

so that d = 2(Lib ' )  2 for d = 2 and iT= 6(Lib ' )  3 
for d =  3. The monotonic increase of  b' is in 
accord with the decrease of  the mean size of  
fragments as the crack density p '  increases. In the 
asymptotic range of  large densities the term with 
a '  becomes of  marginal importance and the above 
results for the means are exact. 

The other coefficient a '  in Equation 7 shows 
an interesting behaviour, in that it changes sign as 
the crack density increases (Fig. 7). A positive 
(negative) value of  a '  gives a distribution that for 
relatively larger sizes decreases with size faster 
(slower) than a Mott distribution, so that a log- 
plot o f  the cumulative fraction against the linear 

dimension of  the fragments will deviate down- 
wards (upwards). It is convenient to use as a bench- 
mark for fragment distribution that value of  p'  
for which a ' (p ' )  vanishes and the fragments follow 
a Mott distribution. Naming this value PMott', our 
data yield 

t 
OMott = 6 for d = 2 

= 9  f o r d = 3 .  

Experimentally derived fragment-size distri- 
butions [5, 6, 14] deviate downwards from the 
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Figure 7 The coefficient a '  plotted against p'  (linear plot). 
Note the change in the sign of  a '  at the values OMott 
shown by arrows. 
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Mott distribution, so one would conclude from 

the model that the experimental crack densities 

are lower than the Mott-density ' PMott. 
It appears difficult to formulate a convincing 

explanation for this phenomenon.  The need for 

further experimental, numerical and theoretical 

research on this point is one of the consequences 

of the present investigation. 

4. Conclusion 
The main outcome of this research is the repre- 

sentation, in parametric form, of the cumulative 

fragment distributions in two and three dimen- 
sions, as shown in Equation 7 and Figs. 4 to 7. 
The computations establish the Mott distribution 
( a ' -  0 in Equation 7) as a standard for the cumu- 
lative distribution, from which deviations are 
expected to occur: significantly, in both directions. 

The model of small parallelopipeds is intended 

as a simplified representation of small fragments. 
Its virtues are the results it yields and that it is 

amenable to interesting extensions, such as the 
effect of dynamical stresses on the fragment 
distributions or the calculation of the amount  
of damage in the fragments due to internal cracks 

present in them [15]. 
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